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ABSTRACT 

The Free Electron Laser (FEL) is a potential solution for the U.S. Navy's anti-ship 

missile point defense by providing an evolutionary increase in weapon accuracy. To become 

an effective weapon, the FEL will need to provide an average optical power of approximately 

one MW. Towards this goal, the Thomas Jefferson National Accelerator Facility (TJNAF) in 

Newport News, Virginia is constructing the first kW FEL, and desires to improve the design 

to 20 kW while maintaining less than 6% energy spread. Using a klystron undulator is one 

potential way to accomplish this. Given design parameters of a proposed free electron laser 

by TJNAF, this study quantifies via simulation the behaviors of gain, power and energy 

spread as functions of desynchronism and a klystron's dispersive strength. Specifically, it 

shows that a conventional undulator appears capable of meeting all TJNAF design 

requirements. 
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I. INTRODUCTION 

A. THE DEFICIENCY IN CURRENT ANTI-SHIP MISSILE POINT DEFENSE 

1. Current Point Defense System Description 

Since 1978, the Phalanx Close-in Weapon System (CIWS) has been the U.S. 

Navy's last line of defense against anti-ship cruise missiles. CIWS is currently installed 

aboard all combatants, amphibious landing and logistics support ships. CIWS uses a 20- 

mm Gattung gun with a microwave radar that tracks both the incoming missile as well as 

the outgoing CIWS rounds. This allows the mount to autonomously adjust the stream of 

rounds onto the target. Engagements can begin out to 2 km with a minimum engagement 

range of 100 m. 

2. Performance Appraisal Using Simulation 

Just how effective is this system? CIWS has never been challenged in combat. 

We must therefore resort to simulation to predict its performance against real world 

threats. Modeling the path of CIWS rounds is a simple problem in classical physics. For 

the purpose of this analysis, the effects of gravity and air drag are included, and perfect 

tracking by CIWS' radar is assumed. 

Every gun system suffers from an effect called dispersion. It is the error incurred 

when rounds do not go precisely where they are directed. The reasons for this effect are 

numerous: barrel vibrations, variations in shell manufacturing, etc. Despite reduction 

efforts in this area, CIWS still experiences a dispersion of 3 millirads or 0.17 degrees [1]. 

It may not sound like much, but it has a large affect upon performance. 
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A typical CIWS burst is approximately 200 rounds. Given a stationary missile with a 20 

cm radius (typical of today's cruise missile inventory) at 750 m range (less than half the 

maximum engagement range), only 3 rounds out of 200 actually hit [1]! Figure 1 

graphically shows these results. 
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Figure 1. CIWS Dispersion 

This makes the intercept probability of any one round at 750 m just 1.5%. Figure 2 

shows the intercept probability behavior as a function of decreasing range [1]. The 

maximum probability is just over 35% at 100 m (CIWS' minimum engagement range). 

Beyond 700 m, the probability of hit drops off to almost nothing. 
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Figure 2. Single Round Intercept Probability 

The previous analysis has focused on hitting the missile once. Unfortunately, 

missiles rarely die from the first hit. Rather, it takes an average of six to ten hits to either 

destroy the missile's aerodynamics or ignite its warhead [1]. To continue with our 

analysis, let us assume eight hits, and that the missile is moving at 300 m/s (slow by 

today's standard) on a constant trajectory inbound to the ship. At what range is this 

missile typically destroyed? 

The CIWS firing rate is 50 rounds/s, and each round has an initial velocity of 

1,200 m/s. This means that an incoming missile encounters approximately 21 rounds 

with every 100 m section in decreasing range to the ship. The number of CIWS hits on 

the missile at a particular range is equal to 21 rounds multiplied by the single round 

intercept probabilities shown in Figure 2. The accumulated hit count as the missile 

approaches the ship reaches eight at approximately 150 m. If we simulate debris 



trajectories from a typical warhead at a height 5 m above the water and 150 m range, 

more than half of the debris strikes the ship [1]! 

So for even a quite simple threat, the ship will suffer damage. In today's warfare 

of zero tolerable losses, any amount of ship damage could force its withdrawal from the 

theater of operations. Given today's sophisticated, anti-ship cruise missile environment, 

CIWS can not be counted upon to capably defend our fleet. Therefore, we should pursue 

research on a point air defense system that is much more accurate with longer range. 

B. POTENTIAL ANSWER: THE FREE ELECTRON LASER 

1. Basic Description 

A potential long-term answer to the U.S. Navy's point air defense problem is a 

high-energy laser. One candidate is the Free Electron Laser (FEL). In its simplest 

description, a FEL is made of two major components: an electron accelerator and an 

undulator. The accelerator propels electrons to near the speed of light. The relativistic 

electrons then enter the undulator, which consists of a series of alternating magnets. If 

we assume a planar undulator (2D only), these alternating magnets produce a sinusoidal 

magnetic field along the undulator axis. As the electrons pass by each magnet, they are 

deflected slightly from side to side. This periodic action converts the straight electron 

beam path into an oscillating one. As the electrons oscillate in the presence of light, they 

bunch together and emit coherent light radiation. 

There are two types of free electron lasers: oscillators and amplifiers. In an 

oscillator (Figure 3), the optical field (seen in gray) is stored between two mirrors with 

the undulator in the middle. With each pass of the optical wave through the undulator, it 



receives more and more energy from the electron beam. Between one and ten percent is 

extracted from the optical cavity to make a weapon! 

Electron Beam Undulator Electron Dump 
 ► 

Mirror 

Figure 3. Oscillating FEL 

An amplifier is similar, but lacks the mirrors at either end of the undulator. Here, 

the optical wave makes only a single pass down the undulator. This design works well if 

the optical field already exists, the FEL gain is large, and the output power is enough to 

destroy any mirrors. 

2. Potential Advantages Over The Current Point Defense System 

While FEL offers several advantages over CIWS, the primary ones are increased 

range and improved accuracy. Although CIWS has a maximum engagement range of 2 

km, the previous analysis shows that consummation of even a simple engagement may 

not occur until a few hundred meters. In addition to subjecting the ship to missile debris 

at this short kill range, CIWS is unlikely to have sufficient time to engage a second 

trailing missile. On the other hand, the FEL's effective range is from 5 to 10 km. This is 

a tremendous tactical advantage since it prevents ship damage from debris and greatly 

improves our ability to engage a second and even third successive threat. 



A second advantage is improved accuracy. Laser weapons do not suffer from dispersion. 

Through the use of optics, we can focus a laser's energy within the cross-sectional area of 

a missile even at 5 to 10 km. 

3. Potential Advantages Over Chemical Lasers 

The U.S. Army and Air Force are developing high-energy chemical lasers for 

battlefield air defense and Theater Ballistic Missile Defense (TBMD) respectfully. Why 

not choose such a laser for maritime defense? There are two main disadvantages. First, 

the chemical process chosen for each laser application dictates its wavelength. This 

makes the weapon inflexible to changes during and after the design process. A second 

disadvantage is that high power chemical lasers produce large quantities of hazardous 

waste that can not be disposed of at sea. This greatly complicates tailoring such a laser 

for maritime employment. For these reasons, chemical lasers may not be the Navy's 

answer. 

A free electron laser does not produce hazardous waste, and its wavelength is 

tunable by three means: changing the undulator's wavelength (distance between 

magnets), the undulator's magnetic field amplitude or the accelerator's electron beam 

energy. This provides great flexibility in optimizing a laser within its operating 

environment. 

4. Power Required to Destroy a Missile 

Just how much optical power is required to destroy a missile? For ship self- 

defense, the goal is to cause structural failure of the missile's nose cone rather than ignite 

its warhead. Let us assume that the nose of the missile is approximately 1 L in volume 



consisting of about 3x1025 atoms. In a typical solid, we need approximately 1 eV 

(electron, volt) of energy to remove each atom. This translates to 5 MJ of total energy. If 

we permit 2 to 3 seconds per engagement, this means we need 1.5 to 2 MW of average 

power delivered at the missile [1]. 

5. Present Stage of Research & Development 

How close are we to achieving a MW FEL suitable for shipboard deployment? In 

the 1980's, the Strategic Defense Initiative (SDI) goal was to design a 10 MW FEL with 

no intermediate steps at smaller powers. Scientists completed the design, and if built it 

would have been quite large and costly. With a change in national priorities, the U.S. 

Government cancelled SDI before completion of the FEL project. Since then, several 

laboratories have worked with operational FELs in the 10 watt range.   Currently, the 

Thomas Jefferson National Accelerator Facility (TJNAF) in Newport News, Virginia has 

undertaken the next step by constructing a kW FEL. Operation begins in the summer of 

1998. 

C. PURPOSE OF THIS THESIS 

Once TJNAF has successfully proven the kW FEL, their next design step is to 

increase output to 20kW. There are several design initiatives worth exploring to achieve 

this. One is to use a special type of undulator called a klystron. The purpose of this 

thesis is to quantify the steady state gain and final power behaviors of a proposed 20 kW 

klystron. 





II. FEL THEORY 

A. ELECTRON BEHAVIOR WITHIN THE UNDULATOR 

To understand how a FEL works, it is first important to comprehend the electron 

behavior within the undulator [2]. They travel at relativistic velocities, and their motion 

is described using the principles of classical physics. For the undulator, let us use the 

coordinate system shown in Figure 4: 

X 

A 

 ^ 

■>   Z 

y *  I   Undulator 

Figure 4. Undulator Coordinate System 

The undulator's circularly polarized magnetic field can be described by the 

equation: 

B0 = B[coskoz,smkoz,0] (1) 

where B is the magnetic field amplitude.  k0 =2nl X0 is the undulator wave number,. 

A0 is the undulator wavelength (distance between magnets), and z is the distance down 

the undulator. The generated optical field within the undulator is a circularly polarized 

plane-wave composed of its own electric and magnetic fields.   These optically induced 

fields can be described by the equations: 



E = E[cosxi'-smx¥,0]       and      B = £[sin *¥, cos T,0] (2) 

E is the electric and magnetic field magnitudes while ^ = kz - cot + (j>.  k = co I c is the 

optical field wave number, co is the optical wave's angular frequency, and $ is the optical 

wave's phase. The speed of light in a vacuum is c, and t is the time. 

The Lorentz force equation governs electron motion in the presence of electric 

and magnetic fields, 

^ = -e(E + ßxBT)   and    ^p. = -e(v.E), (3) 

where p = ymv is the electron momentum, m is the electron mass, e is the electron 

charge,  v is the electron velocity, ß = v / c is the dimensionless electron velocity and 

Y - (l - ß2)      is the Lorentz factor. From Einstein's relativistic theory, the electron 

energy is ;wc2. Finally, BT = B0 + B is the total magnetic field within the undulator. 

Substituting the definition for momentum into the Lorentz force equation, we can get (3) 

into the form: 

M.-J.^^)   and   f = --?-(?.4 (4) 
at        mc at        mc 

We now insert the electric and magnetic fields of (1) and (2) into (4), and simplify 

the results by splitting ß into two components: ß± = [ßx, ßY ,0] and ßz = [0,0, ßz ], to 

arrive at three components: 

^Mkl = __£_ (E(\-ßz)[cos *¥,- sin V,0]+Bßz[- sin k0z, cos Jfcoz,0},        (5) 
at mc 
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-^j^- = -—[0,0,E(ßx cos¥-/?y siaW) + B(ßx sink0z-ßY cosk0z],      (6) 
\Ai I ill \s 

and -£■ = -—£(ßr cos Y-yff,, sin ¥). (7) 
dt       mc 

To understand electron behavior within the undulator, we need only use equations 

(5) and (7) because (6) can be derived from (5) and (7). Concerning equation (5), we can 

make several simplifying approximations. First, ßz «1 so E(l-ßz)« Bßz when 

E&B. This allows us to ignore the first term in (5) so that 

£^=-£Mq_sin(v,cos(V),o]. 
dt mc 

After integrating (8), the component equations become: 

(8) 

eB eB 
ßx=~~ Tcos(koz)   and   ßy = ~~ rsin(£0z). (9) 

k0ymc k0ymc 

To further simplify (9), the dimensionless undulator parameter is K = eB I k0mc2 so: 

ßx=-(K/y)cos(k0z)   and   ßY = -(K/y)sin(k0z) (10) 

The next step is to now insert (10) into (7) using the trigonometric identity: 

cos A cos B - sin A sin B = cos{A + B), 

f = ^cos(*0z^), (ID 
dt     ymc 

where k0z + x¥ = k0z + kz-ü)t + ^) = (k0 + k)z-cot + <p. Define £ = {kv +k0)z-cot as 

the electron phase in the combined undulater magnetic field and the associated optical 

fields so that (11) becomes: 

dv eKF 
-fFy = cos(C+^). (12) 
dt ymc 

11 



Equation (12) looks similar to a simple pendulum equation, but to get it into the right 

form, we need to express y in terms of £. Recall the definition for the Lorentz factor: 

\ly2 = l-ß2 =\-ß\-ß\. From (9), ß\ = K2 /^2 so that: 

\ + K2        ,    ^      \ + K2(y^ 
ßzK\——   and   ßz = (13) 

2y' ' -      y2 

Since C, = (ku + k0)z - cot, 

£ = (k0+k)cßz. (14) 

When (14) is substituted into (13), the result is: 

t & r 
j \ + K 

(15) 
7    (kQ+k)c 

To simplify any further, we need to shift our focus to the interaction of electrons 

and photons. Photons overtake the electrons as they both proceed down the undulator. 

When one wavelength of light X overtakes an electron just as the electron traverses one 

undulator wavelength X0, the FEL is at resonance. Finding how the undulator and 

optical field wavelengths are related at resonance will enable us to simplify (15), which 

will in turn allow us to write (12) in the desired simple pendulum form. The time 

required for an electron to traverse one undulator period is tE = X0 I vz = X0 I ßzc . In 

the same time, the traveled distance of a photon is X = ctE -vztE = ctF (l-ßz). 

Substituting the first condition into the second yields the relationship: 

i-W-M. (.6) 
ßz 

Inserting (13) into (16) and rearranging, 

12 



is. rl 
22    l + K T- (17) 

Reverting back now to (15), we can simplify it by substituting in equation (17), 

y = . 
f    i.   \ 

fr     (Ao)        &     i   k 
\2k0 j 

(18) 
(k0 + k)c \2AJ    (k0 + k)c 

The undulator wavelength (cm) is much greater than the laser's optical wavelength (urn) 

so k»k0. This allows (18) to simplify to: 

Cy 
7Uc- (19) 

Finally, inserting (19) into (12), the pendulum equation of electron motion within the 

undulator is: 

2kneKE 
£ = —1 cos«-*«. (20) 

y m 

It's helpful when designing a FEL to use dimensionless parameters when possible. 

Such is the case when dealing with time. For an average electron, the time it spends in 

the undulator is t = Llvz =LIßzc&LIc where L is the undulator length and ßz^\. 

The dimensionless time is defined as % = ct IL so that x=0 at the undulator beginning and 

x=l at the end. Rewriting (20) in terms of the second derivative with respect to 

dimensionless time yields: 

f = |a|cos(^ + ^), (21) 

where the dimensionless optical field is |a| = AnNeKLE I y2 mc2, the number of undulator 

periods is N = L/Ä0, and the open dot represents the derivative with respect to r . 

13 



B. OPTICAL WAVE BEHAVIOR WITHIN THE UNDULATOR 

The previous section has detailed electron behavior within the undulator. Now, 

attention is turned to how the optical wave develops within the undulator [3]. As stated 

earlier, the optical field is a circularly polarized plane-wave. The wave's vector potential 

is: 

j_£(z.O [sin^.cosT.O]. (22) 

E(z,t) is the optical wave's electric field magnitude and *F = kz - cot + <f>. k = co Ic is the 

optical wave number, co is the optical wave's angular frequency and 0is the optical phase. 

Optical fields obey Maxwell's wave equation: 

c2 dl1 

AK - 
A = —-J, (23) 

where J L is the total transverse beam current. If the expression for A , (22), is inserted 

into (23) and the left-hand side of the equation is written out, a quite long and 

complicated expression results. The left-hand side can be simplified greatly by making 

the assumptions that the optical wave varies slowly in space with respect to an optical 

wavelength X, and varies slowly in time with respect to a single optical period = XI c . 

Mathematically, this means: 

dE d(f> dE d(j> 
— «coE, —^«axp   and    — «k0E, —^- « k0<p. 
dt dt dz dz 

(24) 

Using (24) to simplify, (23) reduces to: 

J_d_ 
c2 dr 

2    \ 
1 2 ( SE } A « —    

c\dt ) 
IE 

£x ~ 
\dt j 

s2 = 
471   j 

(25) 

14 



where we have defined the two orthogonal unit vectors as: 

ex =[cosxF-sinxF,0]   and   s2 =[sin^/,cosxF,0]. (26) 

Through the slowly-varying amplitude and phase approximation, (25) is converted from a 

second-order differential equation to two first-order equations: 

f 1   PI2 "* 
V2- l   d 

2   a,2 
V c1 dt J 

l    2fdE) 
c\dt) 

— J±-e} and 

2 A 

V2~ 
1   d 

c2 dt2 

-    IE d<f> _   4n -    Ä 
A & — J I   * £ 2 

c   dt        c 

(27) 

(28) 

Now attention is turned to the right-hand side of Maxwell's equation. The current 

of a single electron is Jt = -ecß±S (x-rt) where e is the electron charge magnitude, 

ßx is the dimensionless transverse electron velocity (8), 8 (x -ri) is the three 

dimensional Dirac function, and ri is the position of the z'th electron [4]. Expanded out, 

the transverse current for one electron becomes: 

e2B 
Ju = [cos(k0z), sin(£0 z),0}?3 (x-r,), 

ymco 
(29) 

where B is the magnitude of the undulator's magnetic field, y is the Lorentz factor (3), m 

is the electron mass, and k0'\s the undulator's wave number (1). Substituting (29) into 

(27) and (28), the wave equation becomes: 

e2B 
Jn •*i =  

ymco 

Ju ■s2 

e2B 

ymco 

cos(T + k0z)5\x-ri) 

sm(*¥+ k0z)ö\x-ri) 

(30) 

(31) 

15 



Equations (30) and (31) deal only with a single electron. The total transverse 

current is the sum over all electrons. This is represented by averaging (...) over a fixed 

volume weighted by the electron density p resulting in: 

c\dt j 

2mK 

r 
p(cos(£+0))  and (32) 

Kc dt j 

TJBK 

r 
p sinC+$ , (33) 

where K is the undulator parameter (10) and C, is the electron phase. Equations (32) and 

(33) can be simplified by defining the dimensionless current: 

J 
.   MpienKL)2 

3       2 ' y mc 
(34) 

where L is the undulator length and N is the number of undulator periods (21), and the 

dimensionless optical field strength \a\ in (21). The results are: 

\a\ •= -j(cos(£ + <p)) and 

^ = /T(sin«- + ^)>, 

(35) 

(36) 

where a = |öf|eJ<*. Equations (35) and (36) can be combined back into one equation in 

complex form: 

a = -j(e -K (37) 

16 



C. LOW GAIN DERIVATION 

Gain is the fractional change in power of the optical wave as it makes a single 

pass down the undulator. As mentioned in the introduction, there are two basic FEL 

designs: oscillators and amplifiers. Oscillators typically use low current (j < 1) to build 

the optical field through multiple passes of the light wave through the undulator and 

between the mirrors of an optical resonator. Amplifiers on the other hand typically rely 

upon high current (j »1) to provide high gain in a single pass. The FEL under 

construction at Thomas Jefferson National Accelerator Facility is an oscillator design so 

only low gain is discussed here [5]. See reference [6] for an explanation of high gain 

behavior. 

Using conservation of energy, any change in the optical wave energy is a result of 

an opposite change in the electron beam energy so that the gain can be calculated by 

dividing the change in electron beam energy by the optical wave energy. To find this 

overall change in electron beam energy (which consists of electrons: some gaining and 

some losing energy (21)), we must first find an expression for the energy change of a 

single electron, Aymc1. 

To help understand single electron behavior, we define the dimensionless electron 

phase velocity v as the dimensionless time z derivative of the electron phase £; thus 

£ = v = L[(k0 + kv)ßz -k0]. An electron's change in energy is related to its change in 

phase velocity Au. Since k»k0, Av = LkAßz . Using (13) and (17), the relationship 

between Ay and Av is: 

17 



a ^ 
Av = LkAßz = NÄ0kAßz = 2xN -2- Aßz « 2^ 

The energy change of a single electron is then: 

i + /i:] Aßz^A7iN^-.    (38) 

A^TWC    = 
2    ?wc At» 

ATTN 
(39) 

In the case where the optical field is weak (a«x) and the gain is low (j «n), 

there is little'change in v over the entire undulator length. Therefore, using perturbation 

theory, a solution to the pendulum equation (21) expanded in powers of the initial optical 

field strength a0: 

£(?) = £ o+vor—f [cos(^0 + u0 r) - cos C0+v0rsin £,]+•••, (40) 
^o 

and the electron phase velocity becomes: 

»fa Co ) = °o + — [sHCo + °o T) - sin Co ]+ 

3 
V, o 

— (cos(2^0 +2u0r)-cos2C0)+cosL>0r-l-L>0rsinC0 cos(£"0 +D0T) 

(41) 

+ • 

where £0 and v0 represent initial values of their respective variables. 

The average phase velocity of all sampled electrons within the beam (y\ gives the 

change from the initial phase velocity, Ao = (u) - v0. This makes the average change in 

beam energy: 

—    ,    ymc 
Aymc   =  

i(o)-o„) 
4xN 

(42) 

Equation (41) can be converted by averaging over the initial phases £0: 
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In * vn 

1_ 
2 

cosv0T-\ +—o0Tsinu0T (43) 

We must also include the fact that the electron beam radius does not equal the 

optical beam waist. Conservation of energy only applies within the area where both 

beams overlap. Therefore, we must introduce a filling factor: 

(44) 

where rh is the electron beam radius and w0 is the radius of the optical beam waist. For 

the whole beam, the number of electrons is the electron density p multiplied by the 

volume dV occupied by the optical beam one wavelength long so that (42) becomes: 

pFdVymc2 ((L>) -O0) 
A/mc   = ■ 

AnN 
(45) 

The optical energy within the volume dV'is E2dV I An so the low gain equation is: 

G = 
Aymc pFdVymc2 ((u) -o0) 

AnN Energy0PTICAL 

Inserting (34) and (43) into (46), the gain finally becomes: 

j [2-2cost>0r-f0rsint»0r] 

An 

E2dV. 
(46) 

G = - 
Or 

(47) 

where F has been absorbed into j for brevity. To gain a better understanding of equation 

(47), Figure 5 is a plot of final (r = 1) gain versus the initial electron phase u0 withy'=l. 
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-0.15 J 

Figure 5. Low Gain Spectrum for Low Current and Weak Fields 

Notice that the gain spectrum is anti-symmetric about resonance v0 = 0. Why 

does resonance result in zero gain? Electrons enter the undulator with a random initial 

phase £0 from -nil to ln/2. When an electron's phase is n/2 < (£+$) < 3n/2, equation 

(21) says the phase acceleration is negative. Negative phase acceleration makes the 

change in phase velocity AL> also negative. Equation (39) states that when an electron 

has - Av , it losses energy. That energy is transferred to the optical field thereby 

increasing the laser's gain. On the to other hand, when an electron's phase is -n/2 < (<£+$ 

< n/2, then the phase acceleration is positive so the electron is gaining energy. The only 

way for the electron to increase in energy is by absorbing energy from optical wave 

thereby decreasing the laser's gain. If the electrons' initial velocity is at resonance, they 
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bunch together at £ &nll and equal number of electrons gain and lose energy. The net 

effect is zero optical gain. Figure 6 graphically shows the resonance condition. 

Plotted in the main window is the phase space path (^versus u) of 30 electrons 

as they travel down the undulator (their paths darken as they approach r = 1). Those 

electrons that are decreasing in fare losing energy (increasing the laser's optical energy) 

and those that are increasing in v are gaining energy (depleting the laser's optical 

energy). The numbers of electrons gaining and losing are approximately equal, and they 

are all approaching the same phase of 7112. The top right window depicts gain growth 

as a function of t, and it never rises above zero. The lower right graph shows the 

evolution of the optical phase (f>{r). 

*** FBEr Phase  Space Evolution  *** 
j=l               a0=l         vo=0         N=40 

0=0 
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w^>./ ~ v            ""^^sRL                                           ^^*<. 

^A 
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0.13 
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0-1 

•x/2 3z/2    Ox 1 

Figure 6. Phase Space Diagram of the Resonance Condition 
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While the resonance condition is a good case in understanding electron behavior 

and bunching, it is pointless designing a laser with zero gain. On the other hand, (47) has 

a maximum positive gain at v0 = 2.6. To help understand why, Figure 7 illustrates this 

case. Here, more electrons lose phase velocity than gain, and instead of bunching at it 12, 

they bunch at it. This can be seen analytically by combining (20) and (39) to yield the 

fractional change in electron energy: 

r    ao 
y    AitN 

cosCc (48) 

Equation (48) has the most negative value when Q0-n. Consequently with j = 1 in 

Figure 7, ln(l + G) peaks to a maximum value of 0.13, representing 13% gain. 

*** FED  Phase   Space Evolution  *** 
j=l a  =1 V =2.6     N=40 o o 
<y=0 
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Figure 7. Phase Space Diagram of Maximum Gain for Low Current & Weak Fields 

22 



D. GAIN DEGRADATION DUE TO ELECTRON BEAM QUALITY 

Until now, a perfect electron beam entering the undulator has been assumed. This 

means that all electrons enter the undulator with the same initial energy (i.e. the energy 

spread is Ay I y = 0) and they enter with zero displacement and angular error from the 

undulator's z-axis (i.e. the emittance s = 0). 

Concerning FEL performance, (47) states gain increases with increasing current 

density j. Using (16) and (34), j<x.INlAxn, where I is the electron current, so there are 

three ways to increase/. However, A is usually fixed for a particular application. In 

addition, increasing /tends to decrease the beam quality from the accelerator, and 

increasing Attends to increase the FEL's sensitivity to beam quality by narrowing the gain 

spectrum bandwidth. So, there exists a trade-off between high current density and good 

beam quality [7]. 

To help quantify how poor beam quality affects FEL performance, a Gaussian 

distribution is assumed for the energy spread using (39) to define the standard deviation 

as: 

aG = Av = AnNAy ly. (49) 

If two electrons enter the undulator with the same electron phase g, they will drift apart 

by A£ = AOAT . If aG - Ao « n, then the phase separation is as much as All by the 

time the two electrons leave the undulator. This impairs bunching significantly reducing 

gain. The typical energy spreads from a good accelerator is on the order of 10~3. 

Gaussians are also assumed to represent displacement and angular errors. Their 

associated standard deviations are: 
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where F0 is the electron's rms distance from the z-axis and 9 is the electron's rms 

injection angle. As with ac, when either of these standard deviations is near n, gain 

begins to degrade. 

E. SHORT PULSE EFFECTS 

Most FEL oscillators use short electron pulses rather than a continuous beam. 

These electron pulses in turn produce a short optical pulse. At the undulator entrance 

( T = 0 ), electron and optical pulses enter together where the electron pulse gives up a 

portion of its energy. Although both pulses may enter the undulator at the exact same 

time (i.e. synchronized), their relative positions change as they travel down the undulator. 

The electron pulse travels somewhat slower than the speed of light so it slips back 

relative to its starting point with the optical pulse. This slippage distance is approximated 

by assuming the FEL is at resonance. Resonance, by definition, is when one wavelength 

of light A passes over an electron as that same electron travels one undulator wavelength 

X0. By the time the electron exits the undulator, it has slipped back a distance of NA0. 

If the electron pulse length is comparable to this distance, then the electron-photon 

interaction is dominated by short pulse effects [8]. 

If the distance between mirrors is S, then an optical pulse arrives at the undulator 

entrance ( T = 0) in time intervals of 2S/c. As the optical pulse enters the undulator, the 

distance ahead of its associated electron pulse is the FEL's desychronism d. It is 

normalized to the slippage distance, and equals: 
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d = - 
2AS 

(51) 

Operationally, d is changed by moving one of the mirrors inward by a small amount AS. 

At first thought, d=0 (i.e. synchronized pulses) would seem to result in the most coupling 

since the peak of the electron pulse would coincide with the optical pulse peak each pass. 

However, this is not the case. In fact, it results in zero final power! Figure 8 shows the 

pulse evolution of such a case where the optical power is evolving to zero. 

*•***■■ FBEr Pulse Evolution **** 
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Figure 8. Synchronized Pulse Evolution 

To help understand how the electron and optical pulses evolve, the longitudinal 

coordinate is scaled to the slippage distance by z / NA -> z. This means the optical 

pulse, travelling at speed c, remains fixed in z while the electron pulse, travelling slower 

at ßzc, slips back in z. The lower-left picture of Figure 8 is a graph of the dimensionless 
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current density/ versus z at r = 0 (dark gray) and at z = 1 (light gray). The electron 

pulse is assumed to be parabolic of the form j(z) = (\-2z21 <r\ )j for |z| <az /*J2 and 

zero elsewhere. In Figure 8, az = 1 and has a maximum value of/=2. 

The number of passes through the undulator is represented by «=300 and the 

cavity power loss per pass is \IQ = 1/20. Noise is simulated in Figure 8 by inserting a 

random phase displacement per electron with rms value of ÖC, = 10"4. Just above the 

electron pulse graph is shown the dimensionless optical amplitude a evolution as a 

function of both z and n. The bottom, middle picture graphs (47) showing gain G as a 

function of electron phase velocity v. Just above it is the FEL's power spectrum as a 

function of«. The middle right graph it is the v distribution/as a function of« while the 

graph just below it depicts dimensionless power P as a function of«. The power P is the 

square of the dimensionless optical pulse amplitude a, and can be converted into a real 

average power in four steps. First, using the definition of a in (21), the real electric field 

magnitude E is found. Second, the power density is now known since it equals E2 / 8/r. 

Third, the peak power is the power density multiplied by the beam area, and last, the 

average power is the peak power multiplied by the duty cycle. 

The optical pulse initially grows from noise, and is as wide as crz plus the 

slippage distance Az = 1. Once the optical pulse form, the electron pulse couples with it, 

and it intensifies (see the lower right P(n) graph in Figure 8). It also narrows (see the 

middle left plot of \a(z, «)|). However, since the electron pulse drifts back, it amplifies 

the optical pulse's trailing edge on every pass through the undulator. Equation (47) 

26 



shows this analytically. Very little gain occurs in the first third of the undulator (r «1), 

and the majority of gain occurs towards the end (r «1). As stated earlier, gain requires 

electron bunching, and bunching takes time. The graph of \a(z, n)\ shows this as the 

optical pulse peak decreases in z with each increase in n. Eventually, the optical pulse 

moves back so far that it decouples from the incoming electron pulses, and dies out 

around «=300. 

To ensure the optical and electron pulses remain coupled, the optical pulse 

pathlength As must be shortened (i.e. d > 0). Even a small desynchronism can 

accomplish the desire effect. Figure 9 uses the same parameters as those in Figure 8 with 

the desynchronism of <i=0.003. Because the optical pulse is advanced for each pass, its 

position in z remains constant. This allows the electron pulse to "sweep" across the entire 

optical pulse leaving it undistorted. As a result, the FEL's power grows and eventually 

levels out to a steady-state value. 

Unfortunately, increasing d indefinitely is counter-productive. With increasing d, 

eventually the optical pulse is advanced so far that it again decouples with the incoming 

electron pulse reducing steady-state P. For large desynchronism, the optical field has a 

long exponential tail of the form [8]: 

\a(z)\oce-2/AQd (52) 
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** ** FEL Pulse Evolution **** 
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Figure 9. Desynchronized Pulse Evolution 

F. THE KLYSTRON UNDULATOR 

The klystron is a two-stage undulator specifically designed to improve FEL gain 

in weak optical fields [9]. Figure 10 shows the design of a klystron undulator. 

Simply stated, it is nothing more than an conventional undulator cut in half and spread 

apart to create a drift space between sections. The first section, called the "modulator", 
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Figure 10. Kylstron Undulator 
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prepares the electrons for bunching by developing phase velocity differences. The 

middle section between the conductors provides space for the electrons to bunch as they 

drift. The final section is called the "radiator" where highly bunched electrons create and 

amplify the optical field. The drift section can be shortened by using bending magnets (a 

dispersive section) to reduce overall length [9]. 

The drift or dispersive section strength is given by the dimensionless parameter: 

# = — (53) 
N v   ' 

where N is the number of undulator periods in both the modulator and radiator, and Nd is 

the drift space length in number of undulator periods. Within the drift space, o is 

constant so the only electron phase change is Ag = vD. Electron bunching will therefore 

occur without optical pulse interaction so the optical field remains constant. 

Via simulation, the low current gain curve as a function of v0 can be constructed. 

Figure 11 shows the gain spectrum with j=l and D=l. Comparing with Figure 5, the gain 

increases from 0.13 to 0.37, about three times as much. For/ZXl, the gain equation can 

be approximated near resonance as: 

G(v0)*^sin(ü0D) (54) 

The maximum gain therefore becomes/D/4 when V0=KI 2D. 
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**** Gain and Phase Curves **** 
j=l       a0=l 0=0 

D=l        N=100 S£=o 

Gain       A 
0.37& 

0.0 

0.37S 

Figure 11. Low Current Klystron Gain Versus Initial Phase Velocity 

A negative aspect to using a klystron is that the electron beam quality must be 

sufficient to keep A v0 <n ID. Otherwise, the gain is negative. This is a tighter 

constraint than that placed upon conventional undulators (A v0 <n), and can become the 

limiting design factor when D is large. 
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III. TJNAF FREE ELECTRON LASER 

A. KW FEL DESIGN 

As mentioned in the introduction, TJNAF is planning to achieve first light from 

their kW FEL this summer. Figure 12 is a basic diagram of this laser. Free electrons are 

Decompressor 

42 MeV Dump 

Compressor 350 KeV Photocathode Gun 

Undulator 

10 MeV Cryomodule^ 
32 MeV Cryomodule 

Figure 12. TJNAF kW FEL Design 

created from the 350 KeV photocathode gun and initially accelerated in the 10 MeV 

cryomodule. At this point, they are accelerated further with the 32 MeV cryomodule. As 

shown in the theory section, shortening the pulse width increases/ that in turn improves 

the gain G. To capitalize on this, electrons are "pre-bunched" using a compressor before 

entering the undulator. Upon leaving the undulator, electrons are "unbundled" using a 

decompressor before they enter the first major bend. This helps reduce energy loss 

whenever electrons change direction. Electrons are eventually sent to one of the three 

dumps dependant upon the system configuration. The two 10 MeV dumps are used when 

testing the electron gun and cyromodules. During normal operation, the electrons are 

sent to the 42 MeV dump following the decompressor. The recirculation ring serves an 

important purpose by redirecting the electrons back through the 32 MeV cryomodule out 

of phase. This serves two purposes. First, it conserves energy by using the recirculated 
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electrons to power in part the cryomodule. This reduces what the cryomodule would 

otherwise need in RF power. Second, it reduces the beam dump size by removing 32 

MeV from the electrons before discarding them. 

B. PROPOSED 20 KW FEL PARAMETERS 

Following successful demonstration of their kW FEL, TJNAF plans to improve 

their design to provide 20 kW on target. Table 1 below is a list of proposed parameters to 

meet this goal, and was used in the simulation work contained herein. 

PARAMETER 
Optical Wavelength k 1.05 um 
Undulator Wavelength k0 20 cm 

Peak Undulator Magnetic Field B 2kG 
Undulator Periods N 24 
Undulator Length L 6 m 
Undulator Parameter K 0.79 
Dispersive Strength D 1,2 or 3 

Electron Energy ymc1 200 MeV 

Maximum allowed Energy Spread Ly ly 6% 

Electron Beam Radius rh 0.5 mm 

Electron Pulse Length ez 2.0 ps 

Initial Phase Velocity v0 0.0 (on resonance) 

Initial Electron Phase Velocity 
Standard Deviation aG 

0.3 

Electron Injection Angle Standard Deviation as 0.15 

Peak Current I 200 A 
Average Current 8mA 
Current Density/ 2 

Initial Optical Field a0 0.0 

Cavity losses \IQ 0.1 
Peak Optical Power within cavity 40 GW 
Repetition Rate 74.85 MHz 
Duty Cycle 4x10° 
Average Optical Power P within cavity 1.6 MW 
Required Efficiency for 20 kW on target 1% 

Table 1. TJNAF 20 kW Proposed Parameters 
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IV. SIMULATION RESULTS 

A. KLYSTRON GAIN 

The first design goal was to discover the steady-state gain behavior as a function 

of both dispersive strength D and desynchronism d for a proposed 20 kW klystron. 

TJNAF provided necessary design parameters as provided in Table 1. TJNAF is 

considering D's of 1,2 or 3. LT Richard Steele conducted simulation work for the cases 

of D=0 (a conventional undulator, no klystron) and 1 [10] while this thesis deals with the 

cases D=2 and 3. For completeness, the final results of both are combined in the follow- 

on graph. Desynchronism was examined from d=0.0 (i.e. synchronized pulses) to d=0.3. 

The steady state gain behavior was revealed using the pulse evolution output as 

described in Chapter II, Section E with one exception. Instead of plotting power P as a 

function of the number of passes n down the undulator, P is replaced with gain G as a 

function of«. The simulation was run only long enough for gain to reach a steady state 

value. The results are shown in Figure 13. Desynchronism is plotted along the x-axis 

with G as the y-axis. Simulations were conducted in steps of J=0.02 for all four 

dispersive strength cases. The only deviation from Table 1 in design parameters 

concerned the mirror losses \IQ. To shorten the time required for each simulation, mirror 

losses where neglected by making j2=lxl010. This allowed G to be evaluated accurately. 
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Steady State Gain 

Figure 13. Steady State Gain For Various Dispersive Strengths 

For the conventional undulator (D=0) starting at synchronized pulses (d=0), the 

steady-state gain begins at zero, and then increases to a maximum value of G=0.18 at 

d=0.03. From there, any further increases in d reduce peak gain until it again is zero at 

rf=0.13. 

As shown in Chapter II, Section F, a klystron improves gain in the presence of 

weak optical fields. Figure 13 quantifies this improvement. With D=\, the klystron 

provides a 2.5 increase in peak gain (from G=0.18 to G=0.50). One unfortunate 

consequence is that maximum gain now occurs at a much larger value of d=0.11. 

Increasing d decreases final power further, as will be seen later. A dispersive strength of 

D=2 actually provides the most gain: G=0.67. Notice how the maximum gain now 

occurs at the same d for each D value of 1, 2 or 3. 
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An interesting phenomenon occurs from D=2 to D=3. Although dispersive 

strength increases, there is no further increase in steady state gain. Therefore, there 

appears to be an estimated optimum value of D=2. 

B. KLYSTRON POWER AND ENERGY SPREAD 

The second design goal is to define the final average optical power as functions of 

both d and D. Table 1 provided the operating parameters, and the same values as used in 

gain for D=0, 1,2 and 3, Jin step size of 0.02 between d=Q.O to d=03. Again, LT 

Richard Steele ran simulations for values D=0 and 1 [10], and his final results are 

included in the following results. 

The simulated optical pulse was allowed to evolve to steady state requiring n= 

2,000 passes for small dto «=300 passes for large d. The final dimensionless power was 

read from each output graph, and then converted into a real average power. The results 

are shown in Figure 14. Desynchronism remains on the x-axis with average power on the 

y-axis. 

From Figure 14, a conventional undulator with D=0 provides the most power. 

Maximum power occurs at a small value of d=0.0l (see Chapter II, Section E), and the 

conventional undulator provides 25 times as much as the klystron case for D=\. As 

mentioned earlier, a klystron improves gain in weak fields, but unfortunately, it is at the 

expense of final power at saturation. 
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Final Average Power 
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Figure 14. Final Average Power For Various Dispersive Strengths 
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Figure 15. Klystron Final Average Power For Various Dispersive Strengths 
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Since the conventional undulator provides much more power, why use a klystron 

at all? Higher powered lasers (kW and above) may use higher cavity to increase output. 

Therefore, the gain G must be improved to overcome these losses. The first way to 

increase G is to increase^', but that is limited by the electron gun technology. The 

klystron provides a secondary means to provide the additional gain required. So while 

the klystron lowers output power, it may very well be a necessary evil in achieving the 

required level of gain to make the laser work in the first place. 

Since the conventional undulator so dominates the graph, Figure 15 eliminates 

this case, and allows comparison in terms of power of differing dispersive strengths D. 

Here, D=\ provides about twice as much power as the case D=2 with diminishing returns 

shown for D=2>. While the cases of D=0,2 and 3 show an early maximum then tailing off 

to zero, D=\ exhibits quite irregular behavior. After peaking at d=0.01, it decreases until 

d=0.13 where then it improves to its highest value at d=0.17. The reason for this is 

explained at the end of this section. 

To understand a little about the power behavior, let us examine a few points on 

the graph in detail for D=2. First, let us look at d=0.01 where power is maximum. 

Figure 16 shows the pulse evolution for this point on the graph. 
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** ** FEL Pulse  Evolution **** 
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Figure 16. Pulse Evolution For d=0M 

For a general explanation of each plot within Figure 16, refer to Chapter II, 

Section E. Notice how the optical pulse evolves. It begins with one peak, but when n is 

approximately 650, a second peak forms with equal intensity to the first peak. The power 

reaches steady-state and the electron v spread is Au = 6.5. 

The third design goal is maintaining energy spread Ay/y below 6%. An energy 

spread of 6% or less is necessary for TJANF to successfully recirculate electrons (see 

Chapter III for the benefits of recirculation). Using (39), this translates into an energy 

spread of Ay I y = 2% that is well within the design requirement of 6%. Surprisingly for 

Z)=2 and D=3, the energy spread is constant at 2% for all values of desynchronism. On 

the other end of the desynchronism scale, Figure 17 shows the pulse evolution for 

d=0.13. 
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****    FBL Pulse Evolution **** 
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Figure 17. Pulse Evolution For d=0.13 

Here, there is only one peak with a long exponential ramp formed ahead of the 

main pulse. While the power P reaches steady-state quite early at n «100 passes, it is 

only a third of its maximum value in Figure 16 at <i=0.01. The optical pulse retains this 

kind of shape with further increases in d, but declines gradually to zero amplitude at 

d=0.3. 

In between the lvalues of 0.01 and 0.13, the optical pulse exhibits erratic 

performance. Figure 18 shows such an intermediate case with d=0.Q7. The 

transformation is taking place from a two peak optical pulse to a one peak pulse. This is 

also an example of trapped particle instability [11]. 
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**** FEIr Pulse Evolution **** 
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Figure 18. Pulse Evolution for </=0.07 

The trapped-particle instability occurs when electrons, in the presence of strong 

optical fields (a > n), become trapped within potential wells in phase space. These 

electrons begin to oscillate at the "synchrotron" frequency us «\a\]    [11]. This behavior 

causes the beam current to oscillate that in turn drives modes at sideband frequencies of 

v0±us, shifted away from the fundamental wavelength by AAIA = us 12nN. These 

sidebands can be seen in Figure 18's power spectrum P(v, n). 

Now recall the power curve for the case D=\ in Figure 15. It reaches a peak at 

d=0.01, declines, and then increases again from d=Q.\ to 0.2 before finally diminishing to 

zero at d=0.27. From [10], examining the optical pulse shape with increasing d yields an 

explanation for this behavior. Although the optical pulse amplitude peak decreases in the 
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region d=0.l to 0.2, the exponential ramp of the form shown in (52) is extending at a 

greater rate as d increases. This leads to an overall increase in final average power. 

However, increasing d beyond 0.2 provides a rapid decrease in peak amplitude too great 

for the extended pulse shape to overcome. A rapid decrease in average power results 

until at large d there is no laser power. 
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V. CONCLUSIONS 

The purpose of this study was to quantify the behaviors of steady-state gain, final 

average power and energy spread as functions of desynchronism dand dispersive 

strength D for a proposed 20 kW klystron free electron laser (FEL). This proposal is 

under consideration by the Thomas Jefferson National Accelerator Facility (TJNAF) to 

improve the kW FEL they are now constructing. Design parameters are listed in Table 1. 

These conclusions combine the work contained herein with reference [10]. 

The two major design goals were an average optical power of 20 kW while 

maintaining a final energy spread of 6% or less. The conventional undulator with a 

desynchronism ^=0.03 will achieve these goals. 

Gain peaks in desynchronism at J=0.05 for D=0 and at d=0.11 for D=\, 2 and 3. 

Gain is proportional to dispersive strength up to an estimated optimal value of D=2. 

Further increases in D result in diminishing gain. A klystron with D=2 provides 30% 

more gain than D=\ and 70% more than a conventional undulator. 

The conventional undulator provides 25 times as much power as a klystron with 

D=\. Overall, power is inversely proportional to D with D=\ providing twice as much as 

D=2 and almost 4 times as much as D=3.   For D=\, peak power occurs at d=0.17, and 

falls off rapidly to zero at d=0.25. For D=2 or 3, the undulator's power peaks early at 

d=0.0l, and then gradually declines to zero at d=0.3. 

Energy spread is 2% for D=2 or 3 for all values of desynchronism. The energy 

spread exceeds the design goal of 6% only for the case D=0 within the range d=0.0l to 

d=0.03. 
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